Two-dimensional Nuclear Magnetic Resonance of Natural Products. Part 4.† Investigation of the Solution Conformation of Luliberin by ¹H, ¹³C, and 2D ¹H–¹³C Shift Correlation Nuclear Magnetic Resonance Spectroscopy

Wolfgang Robien * and Ernst Haslinger

Institut für Organische Chemie der Universität Wien, Währingerstrasse 38, A-1090 Wien, Austria Michael Breitenbach Institut für allgemeine Biochemie der Universität Wien, Währingerstrasse 38, A-1090 Wien, Austria

Two-dimensional ¹H–¹³C shift correlation has been used for an unambiguous assignment of the ¹H and ¹³C resonances of luliberin (LH-RH). From ¹H and ¹³C n.m.r. spectra obtained at various pH values no evidence for any strong intramolecular interaction has been obtained.

Luliberin (or LH-RH, luteinizing hormone-releasing hormone) is a neurohormone, which is secreted by cells of the hypothalamus and stimulates the release of luteinizing hormone and follicle-stimulating hormone from the pituitary.^{1,2} It has been shown to be a linear basic decapeptide: pyro-Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH₂.^{3,4} Many structural variants of this molecule have been prepared and it was noticed that amino acid substitution at most positions on the chain causes a reduction in biological activity. Nevertheless, most of the described analogues do have detectable levels of activity.⁵

In order to gain information about the structure-activity relationship of luliberin, intensive efforts have been made to investigate its conformational structure in solution by high-resolution n.m.r.⁶⁻¹¹ and other spectroscopic techniques.^{12,13} The ¹H and ¹³C resonances have been studied in aqueous and in DMSO solutions and the results do not indicate any strong intramolecular hydrogen bonds. The conformations in the two solvents are very similar, the Pro residue is predominantly in a trans conformation and no evidence for stacking of the indole and phenol ring has been obtained.¹⁴ The ¹³C shifts resemble those calculated from the shifts of the constituent amino acids and ¹³C T_1 measurements strongly suggest a random coil conformation for luliberin. On the other hand, the measurement of proton nuclear Overhauser effects in luliberin suggests that a high population of a particular set of conformers might exist in aqueous solution (see ref. 10). Results from fluorescence measurements have been interpreted in terms of a charge-transfer interaction between the imidazolium side chain of histidine and the tryptophan residue. Ionization of the histidine quenches the fluorescence of tryptophan.^{12,13,15,16} The fluorimetric titration curve reveals an unusually low pK value for His-2 of 5.95.

Recently, conformation calculations 1^{7-20} have resulted in the prediction of several low-energy conformations of luliberin. Some of them have been reported to be in agreement with the nuclear Overhauser measurements.¹⁰

We have undertaken ¹H and ¹³C n.m.r. studies with the intention of gaining some insight into the conformational behaviour of luliberin in aqueous solution. As the previously reported ¹³C assignments differ in some instances, we have carried out two-dimensional ¹H-¹³C shift correlation experiments at different pH values, thus obtaining an unambiguous assignment of the ¹³C resonances.

† For Part 3 see: E. Haslinger and H. Kalchhauser, *Tetrahedron Lett.*, 1983, 24, 2553.

Results and Discussion

¹H and ¹³C Spectral Assignments.—The assignments presented here differ in four cases from those reported previously (see ref. 6—9). We have used spin-decoupling experiments for assignment of ¹H resonances and measured the pH dependence of ¹³C and ¹H shifts. Finally, a 2D ¹H-¹³C shift correlation experiment ²¹⁻²³ was performed to interrelate the information obtained from ¹H and ¹³C n.m.r. measurements. The results from the ¹H and ¹³C spectra are presented in Tables 1 and 2 and Figures 1—3.

The ¹H signal of pyro-Glu-1-H_{α} is readily found in the ¹H n.m.r. spectrum because it is not overlapping with any of the other resonances. ¹H-¹H Decoupling gives the resonance positions of the protons pyro-Glu-1-H_{β}, which are diastereotopic and exhibit different chemical shifts. From these, the corresponding ¹³C resonances could be obtained. The ¹³C resonances of pyro-Glu-1-C_{γ} and Pro-9-C_{β} are coincident. The ¹³C resonances of His-2 are easily recognizable because, with the exception of the C(4), their shifts are strongly pH dependent giving a pK value of 6.2 for His-2. At pH values smaller than 6.0 no signal for C(2) is observed as a consequence of extensive line broadening.

For the unambiguous assignment of the ¹³C signals of Trp-3 we used the 2D shift correlation together with some additional ¹H-¹H decoupling experiments. From the contour plot of the aromatic region one finds that the ¹³C signal at $\delta = 113.0$ p.p.m., which corresponds to C(7), is correlated to the high-field doublet in the aromatic region of the ¹H spectrum. The latter is therefore H(7) and the second doublet at slightly lower field must be assigned to H(4) giving $\delta =$ 119.3 p.p.m. for the resonance position of C(4) via the shift correlation. INDOR ²⁴ experiments with these doublets gave two distinct resonance positions for H(5) and H(6), which are used to assign the ¹³C resonances of the corresponding carbons (Figure 2). We obtain $\delta = 120.5$ p.p.m. for C(5) and $\delta = 123.1$ p.p.m. for C(6) showing that the assignment from Wessels et al.⁶ and Deslauriers and Somorjaj⁷ is the correct one. In a similar way we obtained the resonance frequencies for the aliphatic carbons of Trp-3. From the contour plot of the aliphatic region one finds that the low-field part of two triplets at $\delta = 4.7$ p.p.m. in the ¹H spectrum belongs to the Trp-3-H_{α}, thus the high-field part is the resonance of the His-2- H_{α} .

Ser-4-C_{β} and Pro-9-C_{α} are barely resolved and in fact have not been assigned in some previous experiments. However, discrimination of the ¹³C resonances of Ser-4-C_{β} and Pro-9-C_{α} could be achieved despite the almost identical resonance

Group		Shift (p.p.m.)	Group		Shift (p.p.m.)
pyro-Glu	Cα	57.65	Gly	Cα	43.25 ª
	Св	26.16	•		
	Ċγ	30.26 ^b	Leu	Сα	53.37
	01	•••==		Cß	40.92
				Č ^v	25.40
His	Сα	53.97			23.10
	Св	28.18			21.00
	$\tilde{C}(2)$	135.39		Co	21.90
	C(4)	118.14	Åra	Ca	52.15
	ČĠ	130.80	Alg		22.13
	0(5)	190.00		Cp	20.09
				Cy	25.09
Trn	Са	55.51		Co	41.70
112	CB	28.05		Ce	157.74
	C	125 55	_	-	
	C(2)	109 72	Pro	Cα	61.36
	C(3)	110 22		Сβ	30 .34 ^b
	C(4)	119.55		Сү	25 .79
		120.43		Сб	49.04
	C(6)	123.08			
	C(/)	112.99	Gly	Cα	43.59 ª
	C(8)	137.25	·	56, 8	ď
	C(9)	128.04			, ∝, co.u
			Tyr	HU-4 1- L	$H_2 - UH - UU_2H$
_	_			`3 <u></u> 2′	
Ser	Cα	56.56		0	INFT 2
	Сβ	62.22	Trn	<u>4</u> 3	α
			шр	5 9 3 - CH	
				ĨĨĨ	
Tyr	Cα	56.59		6 8 2	NH ₂
	Сβ	36.93			
	C (1)	129.07		77 N	
	C(2)	121 60		βα	
	C (6)	131.00	His	N 5 - CH2 CH	H-CO2H
	CON	116 80	1113		2
	$\tilde{\mathbf{C}}$	116.50		2, 4 NI	H ₂
	C(4)	155.68		^N N [−]	-
	U (7)	155.00			

Table 1.	¹³ C	Chemical	shifts	of	luliberin	in	D_2O	(pD	=	5.85)	ŧ
----------	-----------------	----------	--------	----	-----------	----	--------	-----	---	-------	---

^a Assigned from T_1 -measurement (see ref. 9). ^b May be interchanged.

Table 2. ¹H Chemical shifts of luliberin in D_2O (ref. to external Me₄Si)

Group		Shift (p.p.m.)	Group		Shift (p.p.m.)
pyro-Glu	CαH	4.16	Gly	CαH	3.86
	Свн	2.3: 1.6			
	СуН	2.24	Leu	CαH	4.29
	•			СβН	1.6
His	CαH	4.57		СүН	1.57
	СβН	3.1		СδН	0.91; 0.86
	C(2)H	8.24			
	C(4)H	7.1	Arg	CαH	4.53
_	~			Свн	1.62
Trp	CaH	4.66		Сүн	1.6
	Срн	3.1		Сон	3.09
		7.15	Dro	C~U	13
	C(4)H	7.40	FIO	CRH	10.223
	CIGH	7.1		CvH	1.9, 2.29
	C(7)H	7.43		СδН	3.47: 3.7
_					
Ser	CαH	4.29	Gly	СαН	3.86
	СβН	3.65			
Tyr	CαH	4.51			
•	СβН	2.81; 3.09			
	C(2)H	6.97			
	C(3)H	6.84			
	C(5)H	6.84			
	C(6)H	6.97			

position of the ¹³C signals by a *J*-modulated ¹³C spectrum ²⁵ (Figure 1). (For a similar method see ref. 26.) The corresponding ¹H signals could be obtained *via* the contour plot. An ¹H homo-decoupling experiment gives the resonance position of Ser-4-H_{α} which in turn yields the assignment of Ser-4-C_{α}.²⁷ Comparison of shift data from the literature confirms our conclusion.

The ¹³C signal of Tyr-5-C_{β} is found easily by considering chemical shift arguments. Despite extensive overlap of the corresponding proton signals with Arg-8-H₈, His-2-H_{β}, and Trp-3-H_{β} one can readily see the diastereotopic protons of Tyr-5-H_{β} appearing at different chemical shifts in the 2D-n.m.r. experiment (Figure 3).

 C_{α} of Gly-6 and Gly-10 could not be assigned unambiguously by our experiments, although they have been assigned previously by T_1 measurements (see ref. 9). The ¹³C and ¹H resonance lines of Leu-7 in position δ are easily assigned in the ¹H and ¹³C n.m.r. spectrum. The Leu-7-C_y signal is the only one in this shift region derived from a CH group and is identified in the *J*-modulated ¹³C spectra (Figure 1). The Leu-7-C_β resonance is immediately found in the contour plot owing to its low proton shift. We have assigned Leu-7-C_α by comparison with shift data given in the literature.²⁷

A similar procedure is suitable for the assignment of the ¹³C resonances of Arg-8 and Pro-9. Some of the Pro-9 ¹³C signals appear as doublets in the contour plot, distinctly showing different chemical shifts of the attached diastereotopic protons. ¹H Shifts obtained from transverse section of

Figure 1. 62.9 MHz J-modulated ¹³C n.m.r. spectrum of luliberin in D_2O (pD = 5.85)

Figure 2. 2D ¹H- 13 C shift correlation spectrum of the aromatic region of luliberin in D₂O (pD = 5.85)

Figure 3. 2D ¹H-¹³C shift correlation spectrum of the aliphatic region of luliberin in D_2O (pD = 5.85)

the 2D data matrix at the corresponding $^{13}\mathrm{C}$ shifts are given in Table 2.

earlier (refs. 12—14) from fluorescence measurements of the Trp-3 residue in luliberin, showing that His-2 at low pH quenches the Trp-3 fluorescence.

pH Dependence of ¹H and ¹³C Resonances.—The sensitivity of chemical shifts to the charge state of ionizable groups has been clearly established and these effects have proved to be a valuable source of information on peptide or protein structure in solution.²⁸ Histidine was one of the first ionizable residues to be studied in detail in peptides and proteins.²⁹ In simple peptides it exhibits a pK value of 6.8, but in proteins pK values of from 3.0 to 8.5 have been found. We have determined the ¹H and ¹³C chemical shifts at various pH values and computed a pK value of 6.2 for His-2 in luliberin,³⁰ which is smaller than the pK value found in His-Trp of 6.8. The resonance of the proton at C(4) in the neighbouring Trp-3 reflects the ionization behaviour of His-2 yielding a pK value near 6 (ref. 5). A similar pK value has been obtained

Conclusions

The n.m.r. spectra gave no evidence that there is a strong intramolecular association and no indication for any conformational preference could be obtained. The pK value of His-2 is somewhat smaller than in the component peptide His-Trp and the His is protonated predominantly at N(3).^{28,31,32} Ring current effects are absent and only a small temperature dependence of some signals has been observed. These results strongly point to a random-coil conformation for luliberin and it might well be that the active conformation of luliberin is established during the binding process to the hormone receptor.

Materials.—Luliberin acetate (25 mg) was purchased from The Peptide Research Institute, Osaka, Japan.

Methods.—The n.m.r. experiments were carried out on a Bruker WM-250 n.m.r. spectrometer in sample tubes of 5 mm diameter. Typical parameters for the shift correlation experiments are: 20 mg per 0.4 ml D_2O (pD = 4.30, 5.85, uncorrected pH meter readings). Data matrix: 4 k × 128, SW₁ = 2 000 Hz, SW₂ = 7 700 Hz, 90°-pulse: ¹H: 18 µs, ¹³C: 16µs, D3 = 3.6 ms, D4 = 2.4 ms. QP-detection in both dimensions, Bruker standard software.³³

Acknowledgements

We are grateful for financial support by the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (Projekt Nr. 4009) and to Dr. K. P. Wolschann for providing the programs for the pK calculation.

References

- 1 G. W. Harris, Proc. R. Soc. London, Ser. B, 1973, 122, 374.
- 2 G. W. Harris, J. Endocrinol., 1972, 53, 1.
- 3 H. Matsuo, Y. Baba, R. M. G. Nair, A. Arimura, and A. V. Shally, Biochem. Biophys. Res. Commun., 1971, 43, 1374.
- 4 A. V. Shally, A. Arimura, W. H. Carter, T. W. Redding, R. Geiger, W. König, H. Wissman, G. Jäger, J. Sandow, N. Yanaihara, T. Hashimoto, and M. Sakagami, *Biochem. Biophys. Res. Commun.*, 1972, **48**, 366.
- 5 J. Rivier, M. Monahan, W. Vale, G. Grant, M. Amoss, R. Blackwell, R. Guillemin, and R. Burgus, *Chimia*, 1972, 26, 300.
- 6 P. L. Wessels, J. Feeney, H. Gregory, and J. J. Gormley, J. Chem. Soc., Perkin Trans. 2, 1973, 1691.
- 7 R. Deslauriers and R. L. Somorjaj, J. Am. Chem. Soc., 1976, 98, 1931.
- 8 R. Deslauriers, R. Walter, and I. C. P. Smith, Biochem. Biophys. Res. Commun., 1973, 53, 244.
- 9 R. Deslauriers, G. C. Levy, W. H. McGregor, D. Sarantakis, and I. C. P. Smith, *Biochemistry*, 1975, 14, 4335.
- 10 R. F. Sprecher and F. A. Momany, Biochem. Biophys. Res. Commun., 1979, 87, 72.

- 11 B. Donzel, J. Rivier, and M. Goodman, *Biochemistry*, 1977, 16, 2611.
- 12 M. Shinitzky and M. Fridkin, Biochim. Biophys. Acta, 1976, 434, 137.
- 13 S. Mabry and I. M. Klotz, Biochemistry, 1976, 15, 234.
- 14 G. Govil and R. V. Hosur, in 'Conformation of Biological Molecules. NMR Basic Principles and Progress, Volume 20,' eds. P. Diehl, E. Fluck, and R. Kosfeld, Springer Verlag, Berlin, Heidelberg, New York, 1982.
- 15 M. Shinitzky and R. Goldman, Eur. J. Biochem., 1967, 3, 139.
- 16 M. Shinitzky and M. Fridkin, Eur. J. Biochem., 1969, 9, 176.
- 17 F. A. Momany, J. Am. Chem. Soc., 1976, 98, 2990.
- 18 F. A. Momany, J. Am. Chem. Soc., 1976, 98, 2996.
- 19 F. A. Momany, J. Med. Chem. 1978, 21, 63.
- 20 V. P. Golubovich, Bioorg. Khim., 1981, 7, 819.
- 21 R. Freeman and G. A. Morris, Bull. Magn. Reson., 1979, 1, 5.
- 22 L. D. Hall and J. K. M. Sanders, J. Am. Chem. Soc., 1980, 102, 5703.
- 23 E. Haslinger, H. Kalchhauser, and W. Robien, *Monatsh. Chem.*, 1982, **113**, 805.
- 24 K. G. R. Pachler and P. L. Wessels, J. Magn. Reson., 1973, 12, 337.
- 25 D. W. Brown, T. T. Nakashima, and D. L. Rabenstein, J. Magn. Reson., 1981, 45, 302.
- 26 D. M. Dodrell and D. T. Pegg, J. Am. Chem. Soc., 1980, 102, 6398.
- 27 K. Wüthrich, 'NMR in Biological Research: Peptides and Proteins,' North-Holland, Amsterdam and Elsevier, New York, 1976.
- 28 O. Jardetzky and G. C. K. Roberts, 'NMR in Molecular Biology,' Academic Press, New York, 1981.
- 29 J. H. Bradbury and H. A. Sheraga, J. Am. Chem. Soc., 1966, 88, 4240.
- 30 E. Giralt, R. Viladrich, and E. Pedroso, Org. Magn. Reson., 1983, 21, 208.
- 31 A. Allerhand, R. S. Norton, and R. F. Childers, J. Biol. Chem., 1977, 252, 1786.
- 32 A. Allerhand, in 'Methods in Enzymology, Volume 61, Enzyme Structure Part H,' eds. C. H. W. Hirs and S. N. Timasheff, Academic Press, New York, 1979.
- 33 W. E. Hull, ASPECT-2000 Puhe Programmer Manual, Bucker Analytische Meβtechnik, Rheinstetten, 1982.

Received 18th May 1983; Paper 3/776